martes, 14 de diciembre de 2010

simetria axial y central, rotacion y traslacion de figuras

SIMETRIA AXIAL
La simetría axial (también llamada rotacional, radial o cilíndrica) es la simetría alrededor de un eje, de modo que un sistema tiene simetría axial o axisimetría cuando todos los semiplanos tomados a partir de cierto eje y conteniéndolo presentan idénticas características.
Dada una recta \scriptstyle e se llama simetría axial de eje e al movimiento que transforma a un punto P en otro punto P' verificando que:
  • El segmento PP' es perpendicular a \scriptstyle e.
  • Los puntos P y P' equidistan del eje \scriptstyle e.
Archivo:Axisimetria.png



TRANSFORMACIONES ISOMETRICAS

Las transformaciones isométricas son transformaciones de figuras en el plano que se realizan sin variar las dimensiones ni el área de las mismas; la figura inicial y la final son semejantes, y geométricamente congruentes.
La palabra isometría tiene su origen en el griego iso (igual o mismo) y metria (medir), una definición cercana es igual medida. Existen tres tipos de isometrías: traslación, simetría y rotación.

Dicho de otra forma el eje \scriptstyle e es la mediatriz del segmento PP'
La simetría axial no solo se presenta entre un objeto y su reflexión, pues muchas figuras que mediante una línea pueden partirse en dos secciones que son simétricas con respecto a la línea. Estos objetos tienen uno (o más) ejes de simetría.
La simetría axial se da cuando los puntos de una figura coinciden con los puntos de otra, al tomar como referencia una línea que se conoce con el nombre de eje de simetría. En la simetría axial se da el mismo fenómeno que en una imagen reflejada en el espejo.
A los puntos que pertenecen a la figura simétrica se les llama puntos homólogos, es decir, A’ es homólogo de A, B’ es homólogo de B, y C’ es homólogo de C. Además, las distancias existentes entre los puntos de la figura original son iguales que las distancias entre los puntos de la figura simétrica. En este caso: La simetría axial se puede dar también en un objeto con respecto de uno o más ejes de simetría.
Si se doblara la figura sobre el eje de simetría trazado, se podría observar con toda claridad que los puntos de las partes opuestas coinciden, es decir, ambas partes son congruentes.
Archivo:Traslacion triangulo.png




SIMETRIA CENTRAL
La simetría central, en geometría, es una transformación en la que a cada punto se le asocia otro punto llamado imagen, que debe cumplir las siguientes condiciones:
a) El punto y su imagen están a igual distancia de un punto llamado centro de simetría.
b) El punto, su imagen y el centro de simetría pertenecen a una misma recta.

ROTACION
Una rotación, en geometría, es un movimiento de cambio de orientación de un cuerpo, de forma que, dado un punto cualquiera del mismo, este permanece a una distancia constante de un punto fijo, y tiene las siguientes características:
  • Un punto denominado centro de rotación.
  • Un ángulo
  • Un sentido de rotación.
Estas transformaciones puden ser positivas o negativas dependiendo del sentido de giro, para el primer caso debe ser un giro en sentido contrario a las manesillas del reloj, y sera negativo el giro cuando sea en sentido de las manesillas.

No hay comentarios:

Publicar un comentario en la entrada